FAQ

Frequently Asked Questions
(quotes and references in italics)

  1. When will Arctic sea ice disappear?
  2. What makes Arctic sea ice retreat so rapidly? 
  3. Why is Arctic sea ice decline so important?
  4. Are temperatures already rising in the Arctic?
  5. What are the consequences of large methane releases? What is the cost of (not) taking action?
  6. What are methane hydrates?
  7. Did methane hydrates ever release much methane in history?
  8. Why is the situation in the East Siberian Arctic Shelf (ESAS) so threatening?
  9. How much methane could be released from the East Siberian Arctic Shelf (ESAS)?
  10. How much methane could be released, say, within a few years?
  11. Is it possible for heat to reach hydrates deep down in the sediment underneath the ESAS?
  12. How much methane is/was there in the atmosphere, how much is added annually?
  13. What is the global warming potential of methane?
  14. What is the lifetime of methane?
  15. Is methane already venting in the Arctic from hydrates?
  16. What should be done to reduce the risk that methane hydrates will trigger runaway warming?
  17. What are the costs of this proposed action (to reduce the risk of runaway warming)?
  18. Shouldn't we wait with geo-engineering until more research is done?
  19. Won't geo-engineering take the pressure off the need to reduce emissions? 
  20. Why should drilling be banned in the Arctic? Why is a spill or blow-out particularly bad in the Arctic?

1. When will Arctic sea ice disappear?

Most sea ice is likely to disappear in September within a few years.

Will sea ice collapse in 2014?There has been some discussion about extrapolating Arctic sea ice data, particularly for data relating to annual minimum sea ice.

I've been trying which kind of trendline fits best and my conclusion is that a trendline pointing at 2014 fits the data best (image left).

The respective data was produced by the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS, Zhang and Rothrock, 2003) developed at Polar Science Center, Applied Physics Laboratory, University of Washington.

As mentioned in the discussion, some ice may persist close to Greenland for a few years more, since Greenland constitutes a barrier that holds the sea ice in place. Similarly, it is suggested that natural variability could prolong the ice longer than expected.

However, such arguments offer no reason to rule out an imminent collapse of the sea ice, since natural variability works both ways, it could bring about such a collapse either earlier or later than models indicate.

In fact, the thinner the sea ice gets, the more likely an early collapse is to occur. It is accepted science that global warming will increase the intensity of extreme weather events, so more heavy winds and more intense storms can be expected to increasingly break up the remaining ice in future, driving the smaller parts out of the Arctic Ocean more easily. Much of the sea ice loss already occurs due to sea ice moving along the edges of Greenland into the Atlantic Ocean.


For other months, it may take a few more years for most sea ice to disappear.
Looking at sea ice extent alone is deceptive, as volume has been decreasing even more dramatically. The thinner the sea ice gets, the bigger the chance that the increasingly intense and frequent storms will smash it to pieces, leaving only a small rim of ice along the edges of Greenland.

Indeed, there are different ways projections can be made from the existing data. Clearly, a linear trend would be inappropriate, given the increased impact of feedbacks such as albedo change. In fact, the above exponential projection is conservative compared to the logarithmic one, which actually appears to fit the data even better, and which points at 2013 as the most likely time when the September sea ice will disappear.

The trends are quite clear, as also illustrated by further charts at:
Arctic Sea Ice - by Sam Carana
http://arctic-news.blogspot.com/p/arctic-sea-ice.html


Getting the Picture - by Sam Carana
http://arctic-news.blogspot.com/2012/08/getting-the-picture.html


2. What makes Arctic sea ice retreat so rapidly?

Emissions result in global warming, as warmer water flows into the Arctic from ocean currents and rivers. Melting permafrost causes even more emissions, while there are further feedbacks such as wildfires raging in tundras and peatlands. The Arctic is especially vulnerable to black carbon (soot), which darkens the ice, resulting in more sunlight being absorbed rather than reflected back into space. This albedo effect accelerates as sea ice retreats and amplifies warming in the Arctic.

Without action to cool the Arctic, methane releases threaten to further amplify warming, triggering runaway warming.

The need for geo-engineering - by Sam Carana
http://arctic-news.blogspot.com/p/need-for-geo-engineering.html



3. Why is Arctic sea ice decline so important?

Permafrost and sea ice keep methane hydrates stable. Arctic sea ice and permafrost still reflect a lot of sunlight back into space while a lot of heat goes into the process of melting the ice. As the sea ice declines and permafrost melts, this light and heat is instead absorbed in the Arctic, further accelerating warming in the Arctic, which is already several times larger than elsewhere on Earth (see next question)).

The image directly above shows the threat of feedbacks further accelerated warming in the Arctic and triggering methane releases, escalating into runaway global warming. Feedbacks that are accelerating warming in the Arctic are further described at:
Diagram of Doom - by Sam Carana
http://arctic-news.blogspot.com/2012/08/diagram-of-doom.html


4. Are temperatures already rising in the Arctic?

The image below shows observed temperature anomalies - global in blue and for higher latitudes in red, with trend added.




As above image shows, temperatures in the Arctic are rising exponentially and without action anomalies look set to reach 10 degrees Celsius within decades. Once that kind of warming starts penetrating sediments, it will be very hard to reverse the process.

See also:
The need for geo-engineering - by Sam Carana
http://arctic-news.blogspot.com/p/need-for-geo-engineering.html


Earlier versions of the above two images appeared on the posted made by Sam Carana for display at AGU 2011
http://arctic-news.blogspot.com/p/agu-poster.html

For an updated version of the above temperature projection, see:
How much will temperatures rise? - by Sam Carana
http://arctic-news.blogspot.com/2013/04/how-much-will-temperatures-rise.html


5. What are the consequences of large methane releases? What is the cost of (not) taking action? 

There will be many consequences, and they all look bad. One likely consequence is that high temperatures at high latitudes will cause wildfires, e.g. in Siberia, which has a very high soil carbon content (see image below).


Such fires would cause huge amounts of soot that will in part settle down on the Himalayan Plateau, darkening the ice and snow, resulting in more heat absorption there and disruption of the flow of rivers that originate there. This can make that both the supply of food and water can be severely disrupted, threatening the extinction of many species.

Glaciers on the Himalayan Plateau act as a water storage tower for South and East Asia, releasing melt water in warm months to the Indus, Ganges, Brahmaputra and other river systems, providing fresh water to more than a billion people. In the dry season glacial melt provides half or more of the water in many rivers.

As the snow melts in the spring and summer, the impact of black soot on the glacier surface increases, since the soot particles do not escape in the melt water as efficiently as the water itself. As a consequence, the soot darkens the glacier surface even more during the melt season, increasing absorption of sunlight, and speeding up glacier disintegration.

Taking no action risks extinction for many species, including humans, possibly within one generation. With so much at stake, the cost of taking action is dwarfed by the price we pay when no action is taken. The longer we wait, the larger the risk becomes and the more difficult, expensive and risky it will become to take measures to try and reduce the risk.

Vast costs of Arctic change - by Gail Whiteman, Chris Hope & Peter Wadhams

The need for geo-engineering - by Sam Carana
http://savetheplanet.gather.com/viewArticle.action?articleId=281474977947089 

6. What are methane hydrates? 

Methane hydrates are crystal-like structures that hold methane. They are likely to remain intact as long as they are not disturbed (e.g. by landslides or earthquakes) and temperatures and pressures remain within certain bounderies.

For more details, see:
- The need for geo-engineering - by Sam Carana
http://arctic-news.blogspot.com/p/need-for-geo-engineering.html
- Methane hydrates - by Sam Carana
http://methane-hydrates.blogspot.com/2013/04/methane-hydrates.html


7. Did methane hydrates ever released much methane in history? 

Pockmarks up to 11 km (6.8 mi) wide off the coast of New Zealand indicate that large abrupt emissions from methane hydrates did occur in the past.
http://methane-hydrates.blogspot.com/2013/06/sea-of-okhotsk.html
Since the location of these pockmarks is prone to earthquakes, seismic activity may have contributed to the release.

Similarly, seismic activity could trigger large methane releases today. The situation is particularly dangerous in the Arctic. Warnings about this have been published for more than a decade, e.g. see the poster at the bottom of:
http://arctic-news.blogspot.com/p/seismic-activity.html 
In the past, hydrates did likely become destabilized as Earth became warmer during interglacial periods. But while Earth - during such periods - may have been several degrees warmer than today, warming in the Arctic probably was not as amplified as it is today. In the Eemian period, for example, there were no ice-free summers in the Arctic. Ice sheets remained largely frozen, in part because ocean currents were quite different from the situation today.

Similarly, another study found that the Greenland ice sheets experienced only modest melting in the Eemian period. 

The extensive sea level rise that occurred during the Eemian period therefore must have been due to melting in Antarctica. 

This suggest that the Arctic sea ice did not retreat enough to cause melting permafrost to destabilize many hydrates in the Eemian priod. According to Paul Beckwith of the University of Ottawa Laboratory for Paleoclimatology and Climatology, this can be explained by a number of factors:

"... the key distinction is that the warming today is from Greenhouse gases being higher and occurs 'twenty-four seven', namely the cooling at night is much less (diurnal variation smaller); in the Eemian the tilt of the Earth was much greater so there was much more seasonality, thus winters were much colder so the sea ice extent, thickness, and thus volume could build up much more, and the summers were warmer in the daytime, however the cooling at night was much greater than now (less greenhouse gas [GHG], more diurnal variation); net result is that the ice was much more durable in the Eemian. Greenland temps were higher during the daytime, but cooled off much more during the nighttime in the lower GHG concentration world."
Even where large amounts of methane did get released from hydrates, this may not have left a mark in ice cores. Paul Beckwith explains:

"The length of time for the methane pulse is very important here. If most of the methane came out in a decade, for example then within a subsequent decade or so most of the methane will have been broken down to CO2 and H20 and also been dispersed/distributed around the planet, away from the pulse source area in the Arctic. The CO2 produced would have been small (CO2 stayed within 180-280 ppm range). It takes about 50 years or even more (depending on the snowfall rate and surface melt rates) for snow at the surface to be compacted into firn that closes off the air spaces creating the bubbles in the ice that are reservoirs of the methane and other atmospheric gases. Because of that 50 year bubble closure time, the large pulse of methane that was burped out of the marine sediments and terrestrial permafrost would be long gone and not result in a detectable signal in the ice core record. Just because the record does not capture it does not mean that it was not produced."
The above points were mentioned in a post by Nafeez Ahmed at the Guardian, at:
http://www.theguardian.com/environment/earth-insight/2013/aug/05/7-facts-need-to-know-arctic-methane-time-bomb

Furthermore, methane that did get trapped in ice may have returned to the atmosphere as temperature rose and the ice melted. Higher temperatures for thousands of years ensured that the methane was over time oxidized, leaving only carbon dioxide traces in later ice, and thus in the ice cores that we examine today. For more on this point, also see the comments and responses at: 

So, many large releases of methane that occurred in the past may not show up as such in records such as ice cores, but large abrupt emissions from Arctic methane hydrates did likely play a key role in the sudden massive warming 11,600 years ago at the end of the Younger Dryas cold period, according to:
http://www.sciencemag.org/content/324/5926/477.summary

There is also evidence that large methane releases to the atmosphere from deep-sea gas-hydrate dissociation occurred during the last glacial episode off the coast of Papua New Guinea, 39,000 and 55,000 years ago, as well as in the Santa Barbara Basin, which occurred in response to a warming of the intermediate waters and thus presumably of the deep-sea sediments. These deep-sea methane emissions occurred synchronously with rapid climate warmings associated with atmospheric methane increases and led Kennett et al. to propose the “clathrate gun hypothesis,” which postulates that deep-sea methane hydrates played a significant role in late quaternary climate changes.  

In conclusion, there's no reason to doubt that there have been large emissions from methane hydrates in the past. Furthermore, the current situation is unprecedented and looks more dangerous in many ways than in previous periods. Firstly, the rate at which temperatures are rising, particularly in the Arctic, is without precedent. Furthermore, the levels of pollutants in the atmosphere today are extremely high (and rising), which is the more dangerous given the presence of huge amounts of methane in the shallows seas of the Arctic. For further reasons why the current situation in the Arctic is so dangerous, see point 8. below and: 
Methane hydrates - by Sam Carana
http://methane-hydrates.blogspot.com/2013/04/methane-hydrates.html

8. Why is the situation in the East Siberian Arctic Shelf (ESAS) so threatening?

ESAS stands for East Siberian Arctic Shelf, an area of over 2 million square kilometers large on the edge of Siberia. ESAS is the largest continental shelf in the world, and 75% of the sea over the shelf is less than 50 meters deep.

At the last glacial maximum (LGM), at the height of the ice age about 20,000 years ago, the sea level was approximately 120 metres lower than it is today. The ESAS was well above sea level and the cold air temperature would have cooled the land surface to considerable depth, freezing water around organic matter into permafrost. Then the sea level rose, and the land and permafrost were inundated. Some of the organic matter would have decomposed, producing methane which could, at certain pressures and temperatures, combine with groundwater to form methane hydrate (a "lattice" of ice and gas). Thus, below the permafrost is now a mixture of hydrate and free methane gas.

Methane release from the East Siberian Arctic Shelf and the Potential for Abrupt Climate Change - by Natalia Shakhova and Igor Semiletov (2010)
http://symposium2010.serdp-estcp.org/content/download/8914/107496/version/3/file/1A_Shakhova_Final.pdf
On carbon transport and fate in the East Siberian Arctic land–shelf–atmosphere system - by Semiletov et al. (2012)
http://iopscience.iop.org/1748-9326/7/1/015201

A recent paper in Oceanology says that the ESAS is not only the broadest and shallowest shelf of the World Ocean, but also undergoes pronounced transformations under the change of climatic epochs. The shelf is also characterized by the location of over 80% of the existing submarine permafrost, as well as of the bulk of shallow water gas hydrates. The most distinctive characteristics of the Arctic compared to oceanic gas hydrates are the following:
  1. high density of the spatial deposition; the thickness of the layer of pure gas hydrates may be as high as 100m or more, unlike the oceanic hydrates occurring mainly in disseminated form; 
  2. the presence of deposits is more likely by several times at the Arctic shelf compared to the Arctic land; 
  3. the high inter stitial saturation with gas hydrate (from 20 to 100% of the interstitial volume against 1–2% for oceanic gas hydrates);
  4. the lower thermal capacity of the phase transition (a third of that for oceanic hydrates); and
  5. high sensitivity to further warming, because of the profound changes in thermal conditions of the subma rine permafrost proceeding as long as 5000–6000 years. 
The Degradation of Submarine Permafrost and the Destruction of Hydrates on the Shelf of East Arctic Seas as a Potential Cause of the “Methane Catastrophe”: Some Results of Integrated Studies in 2011
http://link.springer.com/article/10.1134%2FS1028334X12080144#page-1

Sam Carana discusses further points at the Methane-hydrates blog.
http://methane-hydrates.blogspot.com/2013/04/methane-hydrates.html

9. How much methane could be released from the East Siberian Arctic Shelf (ESAS)?

This question is partly answered in the response to the next question, 10., but an important consideration is that large abrupt releases of methane will additionally trigger further releases.

from: http://arctic-news.blogspot.com/p/how-much-time-is-there-left-to-act.html


To get an idea of how much methane could be released, selected parts are added below from: JICS Annual Report 2010-2011 (page 25):
Recent geochemical and geophysical evidence demonstrates that the ESAS subsea permafrost has been showing signs of destabilization (Shakhova et al., 2010a, b). If this permafrost further destabilizes, emissions could be significantly larger than teragram-sized.

The amount of CH4 that could theoretically be released in the future is enormous. The volume of gas hydrates that underlie the Arctic Ocean seabed is estimated to be 2,000 Gt of CH4 (Makogon et al., 2007). About 85% of the Arctic Ocean sedimentary basins occur within the continental shelf; therefore, within the ESAS alone, which comprises ~30% of the area of the Arctic shelf, hydrate deposits could contain ~500 Gt of CH4. An additional two-thirds of that amount (~300 Gt) is stored in the form of free gas (Ginsburg and Soloviev, 1994). Because submarine permafrost is identical to on-land permafrost, the carbon pool held within submarine permafrost can be estimated to include not less than 500 Gt of carbon within a 25-m-thick permafrost body (Zimov et al., 2006). Thus the total amount of carbon preserved within the Arctic continental shelf could total ~1300 Gt of carbon, of which 800 Gt is previously formed CH4 ready to be suddenly released when appropriate pathways develop (Shakhova and Semiletov, 2009; Shakhova et al., 2010b). Release of only 1% of this reservoir would more than triple the atmospheric mixing ratio of CH4, probably triggering abrupt climate change, as predicted by modeling results (Archer and Buffett, 2005).


A new model of subsea permafrost degradation 


The Arctic Ocean is surrounded by offshore and onshore permafrost, which is being degraded at increasing rates under warming conditions. This warming is most pronounced in the East Siberian part of the Arctic, where surface air temperature increased by about  5°C during 2000–2005 compared to 20th century temperature patterns (Figure 4). In response to this anomalous warming, shrinkage of onshore permafrost is projected to double by 2090 (ACIA, 2004).


At the same time, no attention has been paid to that part of the onshore permafrost that is the most sensitive to warming. This sensitive permafrost was inundated during the last 10–15 Kyr, when the ocean level rose by ≤ 100 m. The thermal regime of the surrounding environment changed drastically as the sea intruded, warming by as much as 12–17°C; gradually, the temperature of the submerged permafrost responded.


References

ACIA. 2004. Impacts of a warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, 139 pp.

Archer, D.E. and B. Buffett. 2005. Time-dependent response of the global ocean clathrate reservoir to climatic and anthropogenic forcing. Geochem., Geophys., Geosys., 6(3), doi: 10.1029/2004GC000854.

Ginsburg, G.D. and V.A. Soloviev. 1994. Submarine Hydrates. VNIIOkeangeologia, Sankt- Peterburg, 1999.

Makogon, Y.F., S.A. Holditch, and T.Y. Makogon. 2007. Natural gas-hydrates – A potential energy source for the 21st Century. J. Petrol. Sci. Engineering, 56, 14-31.

Shakhova, N.E. and I.P. Semiletov. 2009. Methane Hydrate Feedbacks. In Martin Sommerkorn & Susan Joy Hassol, eds., Arctic Climate Feedbacks: Global Implications, Published by WWF International Arctic Programme August, 2009, ISBN: 978-2-88085-305-1, p. 81-92.

Shakhova, N., I. Semiletov, A. Salyuk, V. Joussupov, D. Kosmach, and O. Gustafsson. 2010a. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 327, 1246-1250.

Shakhova, N., I. Semiletov, I. Leifer, P. Rekant, A. Salyuk, and D. Kosmach. 2010b. Geochemical and geophysical evidence of methane release from the inner East Siberian Shelf. J. Geophys. Res. -Oceans, in press

Zimov, S.A., E.A.G. Schuur, and F.S. Chapin III. 2006. Permafrost and global carbon budget. Science, 312, 1612-1613.

Shakhova et al. estimate the accumulated methane potential for the Eastern Siberian Arctic Shelf alone as follows: 
- organic carbon in permafrost of about 500 Gt; 
- about 1000 Gt in hydrate deposits; and 
- about 700 Gt in free gas beneath the gas hydrate stability zone.

From: Methane release from the East Siberian Arctic Shelf and the Potential for Abrupt Climate Change - by Natalia Shakhova and Igor Semiletov (2010)
10. How much methane could be released, say, within a few years?

". . . we consider release of up to 50 Gt of predicted amount of hydrate storage as highly possible for abrupt release at any time."
Anomalies of methane in the atmosphere over the East Siberian shelf: Is there any sign of methane leakage from shallow shelf hydrates? - by Shakhova, Semiletov, Salyuk and Kosmach (2008)
http://www.cosis.net/abstracts/EGU2008/01526/EGU2008-A-01526.pdf


11. Is it possible for heat to reach hydrates deep down in the sediment underneath the ESAS? 

It is possible for heat to reach hydrates in a short period. Waters in the Arctic can be very shallow, which makes that they can heat up quite rapidly, especially in summer when the sun hardly sets in the Arctic.

from: http://www.arctic.noaa.gov/reportcard/ocean.html
As above image shows, sea surface temperature anomalies of over 5 degrees Celsius were recorded in 2007. Strong polynya activity in 2007 caused more summertime open water in the Laptev Sea, in turn causing more vertical mixing of the water column during storms in late 2007 -- bottom water temperatures on the mid-shelf increased by more than 3 degrees Celsius compared to the long-term mean.
http://www.polarresearch.net/index.php/polar/article/view/6425/html_150 

Drastic sea ice shrinkage causes increase in storm activities and deepening of the wind-wave-mixing layer down to depth ~50 m that enhance methane release from the water column to the atmosphere.
http://meetingorganizer.copernicus.org/EGU2012/EGU2012-3913.pdf

The ESAS is very shallow averaging < 50 m depth over its 2x10ˆ6 km2 area, 80% of which is predicted to contain originally sub-areal permafrost unit, now submerged due to transgression. Associated with transgression was a new thermal regime including enhanced heat transfer from warming Arctic Oceans and terrestrial riverine waters to the submerged permafrost, as well as from exothermic oxidation reactions and geothermal sources. As a result, large areas of integrity loss have been identified from widespread bubble ebullition and enhanced aqueous methane levels well above atmospheric equilibrium. The resulting thaw sediments (taliks) and structural breaches facilitate fluid
and gas migration within the permafrost to overlying sediments where some microbial methane oxidation occurs. These destabilizing features may also provide a mechanism for enhanced heat transfer to methane hydrate deposits.
http://meetingorganizer.copernicus.org/EGU2010/EGU2010-1046-2.pdf

Hydrates can exist at the end of conduits in the sediment, formed when methane did escape from such hydrates in the past. Heat can travel down such conduits relatively fast, warming up the hydrates and destabilizing them in the process, resulting in huge abrupt releases of methane.

From: Submarine pingoes: Indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea Hovland et al., Marine Geology 228 (2006) 15–23
http://www.sciencedirect.com/science/article/pii/S0025322705003968

The danger is that heat will travel down cracks, fractures, channels and conduits in the perfafrost, and reach methane held in the form of free gas and hydrates in the sediment. A team of scientists studying methane emissions in the Laptev Sea point at the observed massive methane outburst from the bottom sediments in the image below as an indication that methane must be rising through channels in the sediment.


Because the waters are so shallow, much of the methane that rises up through these waters will not get oxidized. As the methane causes further warming in the atmosphere, this will causing further release of methane that further accelerates warming, in a vicious cycle leading to runaway global warming.
http://arctic-news.blogspot.com/p/need-for-geo-engineering.html

12. How much methane is/was there in the atmosphere, how much is added annually?

from: http://arctic-news.blogspot.com/2013/06/mean-methane-levels-reach-1800-ppb.html
from: http://www.epa.gov/climatechange/science/indicators/ghg/ghg-concentrations.html#fragment-2

from: http://www.esrl.noaa.gov/gmd/dv/iadv/graph.php
from: http://www.esrl.noaa.gov/gmd/dv/iadv/graph.php

from: http://arctic-news.blogspot.com/2013/08/methane-as-high-as-2349-ppb.html


from: http://methane-hydrates.blogspot.com/2013/05/is-global-warming-breaking-up-the-integrity-of-the-permafrost.html

Source: Ed Dlugokencky

The above figure for radiative forcing (RF of about 0.5 W per square meter) does not include indirect effects of methane, such as water vapor. These effects are included in the images below.

Source: Hansen and Sato (2001)

Source: Isaksen et al. (2011)


13. What is the global warming potential of methane?

IPCC AR5 (2013) figures for methane's Global Warming Potential (GWP) are in the table below.


Note that Shindell et al. pointed out in 2009 that when including some important direct and indirect effects, methane's GWP is 105 over 20 years. Over shorter periods, the GWP is even higher, as illustrated by the image below. At a 10-year timescale, the current global release of methane from all anthropogenic sources exceeds all anthropogenic carbon dioxide emissions as agents of global warming; that is, methane emissions are more important than carbon dioxide emissions for driving the current rate of global warming.

Unlike carbon dioxide, methane's GWP does rise as more of it is released. For more on methane's global warming potential, see:
Methane Hydrates - by Sam Carana
http://methane-hydrates.blogspot.com/2013/04/methane-hydrates.html

14. What is the lifetime of methane?

Methane can persist in the atmosphere for as little as 8 years, but its lifetime can be extended to decades, particularly due to lack of hydroxyl in the atmosphere.

Methane's GWP and lifetime depend on variables such as the size of emissions and the location of emissions (hydroxyl depletion already is a big problem in the Arctic atmosphere), the wind, the time of year (when it's winter, there's less hydroxyl), etc. Another variable is the indirect effect of large emissions and what's often overlooked is that large emissions will trigger further emissions of methane, thus further extending the lifetime of both the new and the earlier-emitted methane, which can make the methane persist locally for decades.

http://arctic-news.blogspot.com/p/need-for-geo-engineering.html
http://geo-engineering.blogspot.com/2011/04/runaway-global-warming.html

For more on methane's lifetime, see:
Methane Hydrates - by Sam Carana
http://methane-hydrates.blogspot.com/2013/04/methane-hydrates.html

15. Is methane already venting in the Arctic from hydrates? 



Evidently, it is, given the high levels of methane in the Arctic. Above NASA image shows methane levels of 1870+ in the Arctic for January 2012.
From: Sam Carana, Methane venting in the Arctic

The image below compares methane levels for the period 21-31 January for the years from 2009 to 2013.

from: http://arctic-news.blogspot.com/2013/02/dramatic-increase-in-methane-in-the-arctic-in-january-2013.html
[ click on image to enlarge ]

The two images below, produced by Sam Carana with NASA GES DISC Giovanni data system, show methane levels for early April 2012.

The top image below shows where methane levels exceed 1.9 parts per million.


The image below is a polar projection; note the different scale on the right, which is the one automatically calculated as the default one and exceeds 2 parts per million.

From: Sam Carana,  High methane levels in Arctic - April 2012

More monitoring should take place to analyze details of such venting. Furthermore, data should be more easily available online, while more should be done to interpret the data and assess the risks. A recent private initiative to do so has started at http://methanetracker.org

To some extent, the question how much methane is already venting in the Arctic is no longer relevant. Action can no longer be postponed. It is clear that it's necessary to reduce the risk that large amounts of methane will be released abruptly in future. We need to reduce this risk while we still can.

Methane in the Arctic is monitored through flask and in situ measurements at only three sites, i.e. Barrow (Alaska), Alert (Nunavut, Canada) and Svalbard (Norway), as discussed at: 
http://arctic-news.blogspot.com/p/need-for-geo-engineering.html
Meanwhile, funding for continued in situ measuments at Barrow have been terminated. 

At times, balloons and aircraft also take measurements at higher altitudes, e.g. HIPPO.  
http://arctic-news.blogspot.com/p/seismic-activity.html

Furthermore, there are satellite measurements, such as discussed at: 
http://arctic-news.blogspot.com/2012/02/abrupt-release-of-methane-in-arctic-in.html

Methane in the sea is monitored by buoys, by submarines (Peter Wadhams) and by ships, e.g. at expeditions as discussed at: 
http://arctic-news.blogspot.com/2012/02/video-east-siberian-arctic-shelf.html
http://geo-engineering.blogspot.com/2011/04/runaway-global-warming.html

16. What should be done to reduce the risk that methane hydrates will trigger runaway warming?

Large-scale geo-engineering, afforestation and dramatic reduction of emissions are necessary to bring the atmosphere and oceans back to their pre-industrial state as soon as possible. Additionally, further geo-engineering is necessary to reflect more sunlight back into space, break down or capture methane, etc.
http://arctic-news.blogspot.com/p/need-for-geo-engineering.html

In other words, an approach is recommended that implements the following three parts in parallel: 

PART A. Dramatic reductions are needed of emissions of greenhouse gases, halogens, soot and tropospheric ozone precursors such as carbon monoxide.

"[Measures identified to reduce black carbon and tropospheric ozone] could reduce warming in the Arctic in the next 30 years by about two-thirds . . ."
Dr. Drew T. Shindell et al. in: Summary for Policy Makers, UNEP/WMO 2011

"Increases in global methane emissions have caused a 26% decrease in hydroxyl; global carbon monoxide emissions have caused a 13% decrease in hydroxyl."
Dr. Drew T. Shindell et al. in: NASA Research News, from: Science, October 30, 2009 

PART B. The atmosphere and oceans need to be brought back to their pre-industrial state.

This will take many years and will require the help of a range of geo-engineering methods including large-scale afforestation, biochar and enhanced weathering.
http://arctic-news.blogspot.com/p/need-for-geo-engineering.html
http://280ppm.blogspot.com

PART C. Geo-engineering methods must also be deployed as part of emergency measures to avoid runaway warming, for starters to replace the cooling effect of aerosols now released through combustion. Further geo-engineering will be necessary, particularly ways to capture or break down methane in the Arctic.
http://arctic-news.blogspot.com/p/need-for-geo-engineering.html
http://arctic-news.blogspot.com/p/how-to-cool-arctic.html

For further discussion of what needs to be done, see the Climate Plan at
http://climateplan.blogspot.com

17. What are the costs of this proposed action (to reduce the risk of runaway warming)? 

Again, as discussed under question 5.,we cannot afford not to act. Each policy that seeks to accomplish the necessary shifts comes with costs and benefits, and they will be greater for some people than for others, but generally we will all be much better off if we act. To get the atmosphere and oceans back to their pre-industrial state, feebates are the most effective policy instruments, they can be budget-neutral, have the least leakage and are best implemented locally. Such local implementation means that one doesn't have to wait for policy implementations elsewhere. While a global commitment to act is imperative, the exact shape of such policies is best decided and implemented locally. In many cases, this increases health, job and investment opportunities, while prices of products will come down over time.

Furthermore, geo-engineering methods must be deployed to reflect more sunlight back into space, break down or capture methane, etc. The direct cost of this are estimated to be under $1 billion per year. Additionally, there may be some undesirable side effects of geo-engineering, but - again - the cost of that would be dwarfed by the cost of taking no action.
http://arctic-news.blogspot.com/p/need-for-geo-engineering.html

For further details on what action is needed, see the Climate Plan at:
http://climateplan.blogspot.com

18. Shouldn't we wait with geo-engineering until more research is done? 

Firstly, the question whether more research was necessary wasn't asked when emissions started, and even as the evidence of their harm accumulated, politicians refused to act. Huge amounts of sulfur have already been emitted in the past by volcanoes, coal-fired power plants and bunker fuel used by ships. Emissions associated with the burning of fuel need to be reduced, but at the same time the cooling effect of aerosols needs to be replaced, to reduce the risk of runaway global warming.

The impact of global warming could destroy civilization as we know it, taking away the tools and knowledge necessary to reduce further escalation, as discussed at: Earth is on the edge of runaway warming
http://arctic-news.blogspot.com/2013/04/earth-is-on-the-edge-of-runaway-warming.html 

There are risks associated with any chosen policy; a business-as-usual scenario carries the highest risk of extinction of many species, including humans. With so much at stake, the cost of taking no action is incalculable. The longer we wait, the larger the risk becomes and the more difficult, expensive and risky it will become to take measures in efforts to reduce the risk.

Of course, research should continue to find the safest methods, but there's enough evidence that decisive action is necessary now, and there are many measures that can be taken that are safe and that are beneficial in many ways. There are sufficient technologies and resources available to start acting now. The one thing we don't have enough is time. We are rapidly running out of time. We cannot afford not to act. 
http://arctic-news.blogspot.com/p/need-for-geo-engineering.html
http://samcarana.blogspot.com/2007/03/ten-dangers-of-global-warming.html

19. Won't geo-engineering take the pressure off the need to reduce emissions? 

Firstly, nobody is advocating geo-engineering without also advocating dramatically reducing emissions. Furthermore, as said, geo-engineering should be included in efforts to deal with the situation. More research and actual deployment of geo-engineering methods will help show people how serious and urgent the need is to act and thus convince more people to help out. Only with the help of geo-engineering can the atmosphere and oceans be returned to their pre-industrial state fast enough; geo-engineering is also indispensable to reduce the risk that methane releases from hydrates will trigger runaway warming. 


20. Why should drilling be banned in the Arctic? Why is a spill or blow-out particularly bad in the Arctic?

Given the risk of oil spills and disturbing methane hydrates, drilling in the Arctic should be banned. Since a rapid shift to clean energy is necessary globally, there's no need to drill for fossil fuel in the Arctic in the first place. Rather than drilling for oil and natural gas, oil companies should use their experience with drilling and with hydrates to help out in dealing with the problems.

Circumstances in the Arctic are different from most other places in the world. There is hardly any response capacity ready for launch in the Arctic, while arrival of winter ice would make it even harder to reach many places. Standard responses such as drilling relief wells or using booms are hard to apply when the ice thickens. An oil spill in the Arctic would risk that oil gets underneath the sea ice, from where it will be very hard to recover. Low temperatures mean there are less bacteria to break down the oil. In other places, currents may bring bacteria back to the location of the spill repeatedly. Currents in the Arctic are long, so once bacteria flow away from the location of the spill, it may take a long time for them to return, too long to survive in the cold water and often with little or no sunshine.

Methane won't get broken down easily in the Arctic, as this requires oxygen, which isn't quickly replenished in the Arctic, once depleted. Furthermore, hydroxyl levels in the Arctic are very low, so methane that reaches the atmosphere won't get broken down there easily either.

QUOTES: 
"It seems clear that in a warming world (for whatever reason), methane will be released in increasing quantities, e.g. from warming permafrost, thus augmenting global warming. Disturbances on the sea bed may also cause the decomposition of methane-hydrate. It is known that drilling into methane hydrate poses a hazard to oil prospecting operations, and it is also thought that decomposition of methane hydrate with an eruption of methane could trigger a tsunami."
Professor Chris Rhodes in: Methane Gas Hydrates. .  Feb 1, 2012

LINKS: 
Peter Wadhams - written evidence submitted to UK Environmental Audit Committee
Greenpeace - written evidence submitted to UK Environmental Audit Committee

1 comment:

  1. There is an incredible body of information here adding up to an enormous amount of work, I will be eternally grateful for the access to this information as part of my education on this unfolding disaster.
    Thank you Sam and all other contributors.

    ReplyDelete